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HIFiRE-1 Turbulent Shock Boundary Layer Interaction –
Flight Data and Computations 

Roger L. Kimmel*  
Air Force Research Laboratory, 2130 8th St., WPAFB, OH 45433, USA 

Dinesh Prabhu† 
NASA Ames Research Center, Moffett Field, California 94035 

The Hypersonic International Flight Research Experimentation (HIFiRE) program is a 
hypersonic flight test program executed by the Air Force Research Laboratory (AFRL) and 
Australian Defence Science and Technology Organisation (DSTO).  This flight contained a 
cylinder-flare induced shock boundary layer interaction (SBLI).  Computations of the 
interaction were conducted for a number of times during the ascent.  The DPLR code used 
for predictions was calibrated against ground test data prior to exercising the code at flight 
conditions.  Generally, the computations predicted the upstream influence and interaction 
pressures very well.  Plateau pressures on the cylinder were predicted well at all conditions. 
Although the experimental heat transfer showed a large amount of scatter, especially at low 
heating levels, the measured heat transfer agreed well with computations.  The primary 
discrepancy between the experiment and computation occurred in the pressures measured 
on the flare during second stage burn.  Measured pressures exhibited large overshoots late in 
the second stage burn, the mechanism of which is unknown.  The good agreement between 
flight measurements and CFD helps validate the philosophy of calibrating CFD against 
ground test, prior to exercising it at flight conditions. 

I. Introduction 
The Hypersonic International Flight Research Experimentation (HIFiRE) program consists of extensive ground 

tests and computation focused on specific hypersonic flight technologies.1,2  Its purpose is to develop and validate 
technologies critical to next generation hypersonic aerospace systems.  Candidate technology areas include, but are 
not limited to, propulsion, propulsion-airframe integration, aerodynamics and aerothermodynamics, high 
temperature materials and structures, thermal management strategies, guidance, navigation, and control, sensors, and 
system components.  Each technology program is designed to culminate in a flight test.  The first science flight of 
the HIFiRE series, HIFiRE-1, launched 22 March 2010 at the Woomera Prohibited Area in South Australia at 0045 
Universal Coordinated Time  (UTC) (1045 local time).   

The primary objective of HIFiRE-1 was to measure aerothermal phenomena in hypersonic flight.  The primary 
experiment consisted of boundary-layer transition measurements on a 7-deg half angle cone with a 2.5 mm radius 
nose.  The secondary aerothermal experiment was a shock-boundary-layer interaction created by a 33-deg-flare / 
cylinder configuration.  HIFiRE-1 ground test and computation created an extensive knowledge base regarding 
transition and shock boundary-layer interaction (SBLI) on axisymmetric bodies.  This research has been summarized 
in numerous prior publications.3,4,5,6,7,8,9,10,11,12,13,14   

Preliminary results from the HIFiRE-1 aerothermal experiments have been previously published.15  Ref. 15 
presented preliminary results from both the BLT and SBLI experiments during ascent and descent.  Although the 
vehicle was at a higher angle of attack than intended during descent, the payload instrumentation scheme permitted 
acquisition of interesting and useful high angle-of-attack (AoA) transition data. 16,17  Analysis of the high AoA 
reentry SBLI experiment is considerably more difficult, so the current paper focuses only on the ascent-phase SBLI.  
A prior publication expanded on the SBLI experiment focused on unsteady pressure measurements.18  The current 
publication focuses on comparing computations of the SBLI to flight measurements for the ascent phase of flight. 

* Principal Aerospace Engineer, Associate Fellow AIAA.
† Senior Research Scientist, Entry Systems and Technology Division; currently ERC, Inc., Mail Stop 229-1. 
Associate Fellow AIAA. 
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HIFiRE-1 presents an unusual test case for CFD, since highly-detailed surface measurements were made on a 
relatively simple configuration.  Although the flight conditions were relatively benign, with a maximum Mach 
number of seven during reentry, computation of the turbulent SBLI is not trivial.  Although CFD codes can be 
calibrated against wind tunnel results prior to applying them to flight conditions, it is generally not possible to match 
flight conditions exactly in ground test.  HIFiRE-1 showed significant variations in flight conditions and wall 
temperatures during ascent.  Freestream unit Reynolds numbers ranged from 0 to 60x106 per meter during ascent, 
and ascent Mach number varied from subsonic to approximately 5.5.  Flare temperatures ranged from approximately 
300 K to a peak of 540 K during ascent, and at any time varied significantly through the interaction.  Computation of 
the HIFiRE-1 ascent turbulent SBLI provides an interesting test of a computer code calibrated against a point 
condition in a wind tunnel. 

II. Experiment and Flight Profile 
 
The HIFiRE-1 vehicle has been described in several prior publications, most notably in Ref. 14.  The overall 

payload dimensions and the different payload modules are shown in Fig. 1.  The experiments were carried out on the 
forward sections of the payload including a cone, a cylinder, and a flare that transitioned to the diameter of the 
second stage motor (0.356 m).  The nose tip consisted of an iridium-coated, titanium-zirconium-molybdenum 
(TZM) alloy.  The surface finish of the nose tip after coating was measured to be 6-8 microinches (0.15-0.2 microns) 
RMS (root mean square).  The aluminum cone shell was finished to a 0.8 micron Ra finish (Ra is the arithmetic 
average of roughnesses).  The cone half angle of seven degrees was chosen to match configurations used in 
preceding ground tests and analytical/numerical work.  The aft-portion of the cylinder and the flare consisted of 
AISI 1045 steel. 

The payload contained duplicate instrumentation on rays 180o apart, permitting a cross-check between 
instrumentation on these two rays.  One ray of instrumentation contained a diamond-shaped trip to produce a 
roughness-induced transition.  The payload incorporated this feature to ensure that turbulent data might be obtained 
even if the reentry portion of the flight terminated before natural transition occurred.  Pressures and temperatures on 
the flare on this ray were recorded throughout flight.  The circuit board that conditioned SBLI pressures on the 
cylinder on this ray failed at approximately t=6 seconds, therefore no data were recorded from these instruments 
after this time. 

The ray of instrumentation 180o opposite of the trip contained no intentional trip element.  However, backward-
facing steps on the nosetip of the vehicle tripped transition for t<11.5 seconds.  For t>11.5 seconds, transition moved 
aft with time over the conical portion of the vehicle, until about t=21.5 seconds.  At this point, flow over the cone 
was entirely laminar.  The SBLI began to take on characteristics of a transitional interaction at about this time. 
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Fig. 1 HIFiRE-1 payload configuration, dimensions in mm 

 

The payload flew a ballistic trajectory similar to those employed for the HyShot19
 and Hypersonic Collaborative 

Australia/United States Experiment (HyCAUSE)20
 flights. The as-flown trajectory is shown in Fig. 2.  The Terrier 

first stage burnt for 6.3 seconds and was then drag-separated from the second stage.  The Orion/payload combination 
coasted until the second stage ignited at 15 seconds.  Orion burnout occurred at 43 seconds.  The payload remained 
attached to the second stage throughout the entire flight to provide stability as the payload reentered the atmosphere.  
Approximately the first and last 45 seconds of the trajectory were endoatmospheric.  The remainder of the trajectory 
was exoatmospheric.   
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Fig. 2  HIFiRE-1 as-flown trajectory 

 
A prior publication described the HIFiRE-1 mission.21  The most notable complications in the mission were 

failures of the on-board Global Positioning System (GPS) and the exoatmospheric pointing maneuver.  The loss of 
the GPS meant that the vehicle altitude and velocity had to be reconstructed from existing data such as 
accelerometers, radar tracks, etc.  References 15 and 21 describe development of the best estimated trajectory 
(BET).  The failure of the exoatmospheric pointing maneuver was a more serious malfunction, since it caused the 
vehicle to enter the atmosphere with an angle of attack as high as 40-deg.  Although angle-of-attack oscillations 
damped and decreased as the vehicle descended, the payload angle of attack was still over 10-deg as aerothermal 
data began to be collected during descent.  Since the risk of this occurrence was recognized prior to flight, the 
payload flew unshrouded, i.e. no nosecone shell covered the experiment during ascent.  This permitted low-angle-of-
attack (< 1 deg) data to be obtained during ascent.  This paper will focus on the low AoA ascent data.  Since the high 
AoA during reentry makes interpretation of the SBLI experiment difficult, analysis of this portion of the flight is 
deferred. 

III. Instrumentation 

The primary aerothermal instrumentation for HIFiRE-1 consisted of Medtherm Corporation coaxial 
thermocouples.  Type E (chromel-constantan) thermocouples were installed in the SBLI region.  Kulite® pressure 
transducers measured local static pressures.  Figure 3 illustrates the transducer layout.  All pressure transducers with 
the exception of those in the flare were model XCE-093.  Those in the flare were XTEH-7LAC-190 (M).  Each flare 
transducer output separate AC and DC-coupled signals that were digitized on different channels.   

The coaxial thermocouples were dual-junction models that measured front-surface and back-surface (internal) 
temperatures simultaneously.  These thermocouples were bonded into pre-drilled holes in the model surface using 
LOCTITE® adhesive.  The thermocouples were installed with the backface junction flush to within 0.1 mm 
(estimated) of the model interior surface.  The portion of the thermocouple which extended beyond the model 
external surface was removed using files and abrasives so that the final thermocouple contour matched the model 
surface contour.  This finishing process created a “sliver junction” between the center-wire and annular 
thermocouple materials, in which whiskers of one conductor are dragged over the other to create the thermocouple 
junction. 
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Figure 3 SBLI Transducer Layouts 

 

IV. Computations 
 
The computations proceeded in two stages.  The first stage of computations consisted of calculations for test 

results from the CUBRC LENS wind tunnel.  This permitted several transport models to be evaluated at wind tunnel 
conditions prior to employing them on the flight vehicle.  Run 30 with M=7.19 and unit Reynolds Re=9.5x106/m, 
and α=0 was used as a test case.  The model was full-scale, with a nose radius of 2.5 mm, identical to the flight 
configuration.  The flare of the model was extended downstream to a larger diameter than the flight vehicle to 
ensure that attachment and equilibrium occurred on the flare.  The focus of this effort was on the SBLI.  In these 
calculations, turbulent transport was based on the SST turbulence model with and without a compressibility 
correction.  Laminar flow assumed a constant Prandtl number Pr=0.7.  Wall temperature in the computations was 
constant at Tw=300K.  Transition was forced in the computations to match the wind tunnel transition location.  
Results shown in Figure 4 indicate that the Menter SST model, without compressibility correction, gave the best 

PLBW Flare
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correlation with pressure and heat transfer measured in the SLBI.  These results are in agreement with those of 
Maclean.12  Also, computations with the SST model where boundary layer transition is near the nosetip, and ones 
where transition is forced in the computation near where it occurred in the test, show little effect of transition 
location on the SBLI pressures.  

 
Figure 4  Computation of CUBRC run 30 with varying transport models and boundary conditions.  Pressure 

left, heat transfer right. 
 

In the second stage of computations, the entire flight vehicle was computed at a number of different times during 
the ascent.  Two grids were used for these analyses.  A 1633x537 grid was for 4.5 ≤ t ≤ 19.5 s., and a 1632x367 grid 
was used for 20.5 ≤ t ≤ 23.5 s.  Calculations were carried out for wall temperatures of Tw= 300, 400 and 500K, 
approximately bounding the flight vehicle wall temperatures.   

The effect of the boundary layer transition location on the SBLI was examined, but seemed to have little effect 
on computed results when transition was well upstream of the flare.  Figure 5 shows measured and computed 
laminar and turbulent heat transfer on the cone at four times during ascent.  These calculations were carried out for a 
wall temperature of 300 K.  Since the flight wall temperature was higher than 300K, measured and calculated 
heating rates were converted to convective heat transfer coefficients based on wall and stagnation temperature.  
Error bars on the data are based on a +/-40 kW/m2 uncertainty.  For t=5.5 and 6 seconds, the measured heat transfer 
correlates well with predicted turbulent values.  For t=15.5 and 21.5 seconds, the transition from laminar to turbulent 
heating on the cone is apparent.   

Even though the cone contains a region of turbulent flow over its aft portion at t=21.5 seconds, measurements on 
the smooth-side SBLI begin to deviate from the tripped side slightly before this time.  This departure is evident in 
Figure 6, which shows smooth and rough-side temperatures on the first transducer on the flare downstream of the 
corner.  Temperatures on both sides of the payload agree well until t=20 seconds.  At this point, temperatures on the 
smooth side begin to rise and spike at approximately t=22 seconds.  After this, temperatures decay.  It is surmised 
that this behavior was due to the transitional nature of the flow over the smooth side of the payload.  Therefore, 
comparisons between measured and computed SBLI quantities will be constrained to times less than 20 seconds 
when transition occurs well upstream on the cone.   
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Figure 5  Measured and computed cone heat transfer at various times. 

 

 
Figure 6  Measured smooth and rough-side temperatures on the flare during ascent. 
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V. Pressure 
 
Figure 7 summarizes measured and computed pressure distributions in the SLBI at a variety of times during 

ascent.  Rough-side data is included where available.  Rough-side data agree with smooth-side data, within 
experimental scatter.  Generally, the computation captures the upstream influence well.  With the exception of t=5.5 
seconds, computations agreed with measured pressures on the cylinder and flare until the second-stage burn began at 
t=16 seconds.  After this time, measured and computed pressures on the cylinder agree will, but measured pressures 
on the flare deviate from the computations.  The amount of deviation increases with time.   

 

 
Figure 7  Measured and computed SBLI pressure distributions during ascent. 

 
Several possible causes for the large flare pressure overshoots during second-stage burn were examined.  The 

pressure transducers were temperature and acceleration-compensated, so the increased flare temperature or the 
acceleration during boost was unlikely to have produced the overshoot.  Also, even though the Orion second-stage 
thrust dropped at about 19.3 seconds as the motor entered a sustain-burn phase, causing the payload axial 
acceleration to drop, the flare pressure overshoot remained high.  The temperature boundary condition was 
examined as another possible cause.  Figure 8 shows the effect of increasing the surface temperature from 300 K to 
500 K in the computation.  As expected, this has little effect on the surface pressures.  Increased temperature causes 
a slight reduction in the computed surface pressure.  The increased temperature causes a slight expansion of the 
upstream influence, probably due to the increase in boundary layer thickness attendant with the higher wall 
temperature. 
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Figure 8  Effect of surface temperature on SBLI pressure 

 
In order to understand the high pressures seen on the flare, the measured and computed pressures were compared 

to expected inviscid flare pressures.  The inviscid flare pressures were derived from the Taylor-Maccoll solution for 
a 33o half-angle cone.  For the times examined, the computations show undershoots of the inviscid pressure.  For 
t≤17.5 seconds, the experimental data show either an undershoot or a modest overshoot of inviscid pressure.  At 
later times, the measured pressures overshoot the inviscid levels by large amounts.  Although some pressure 
overshoot is expected at reattachment in a SBLI, the measured flight pressures far exceed any overshoot amounts 
observed in ground test.  For this reason, measured pressures on the flare for times greater than 17.5 seconds must be 
viewed with skepticism.  Although some transitional effects may come into play for t≥20 seconds, the mechanism 
behind these large overshoots remains unknown.  Therefore, it can only be concluded that the large pressure 
overshoots on the flare were spurious and non-physical.  Although the transducers were temperature and 
acceleration compensated, it may be possible that some factors caused this compensation to be ineffective.  Another 
possibility, is that boost acceleration caused mechanical strain in the transducers, leading to erroneous results. 

 

 
Figure 9  Measured and computed pressures compared to expected inviscid flare pressures. 
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VI. Heat Transfer 
 
Figure 10 illustrates the comparison between measured and computed heat transfer in the SBLI after first-stage 

burnout.  Since the CFD was computed at a constant wall temperature, and the experimental wall temperatures 
varied in space and time, the heating is compared on the basis of the convective heat transfer coefficient, h.  The 
convective heat transfer coefficient h is evaluated based on the measured or computed temperature and the 
stagnation temperature, ℎ = �̇�𝑞/(𝑇𝑇0 − 𝑇𝑇𝑤𝑤).  Although the heat transfer coefficient is better evaluated using the 
recovery temperature, this quantity is difficult to evaluate, and the impact on heat transfer coefficient is minimal 
unless the wall temperature approaches the recovery temperature.   

The agreement between the measured and computed heat transfer is fair, and this is due mostly to the large 
scatter in the measured heat transfer.  This is especially true for t=15 and 17.5 seconds, when the heating rates were 
very low.   

 

 
Figure 10  Measured and computed heat transfer. 

 

VII. Conclusions and Future Work 
The DPLR code using the SST turbulence model with no compressibility correction performed well in predicting 

the SBLI pressure and heat transfer over most of the HIFiRE-1 ascent.  This performance is in agreement with 
expectations based on experimental / computational comparisons with ground tests at CUBRC at Mach 7.  Flight 
data during the second-stage boost showed significant pressure overshoots on the flare.  The mechanism behind 
these overshoots, or whether they are even physical or due to sensor malfunction, is unknown.  Overall, the good 
agreement between the measured flight data and the computations helps to validate the strategy of calibrating CFD 
against wind tunnel tests prior to exercising codes at flight conditions.   
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